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1. INTRODUCTION

Stepwise procedures are often used to select concomitant
variables in regression with censored data (Krall, Uthoff § Harley,
197S; Peduzzi, Hardy § Holford, 1980;'Lee, Harrel, Tolley & Rosati,
1983). An undesirable feature of stepwise procedures is that they
lead to a single subset of variables and do not suggest alternative
good subsets. Another concern is the possibility of premature
termination. We shall see later that this is indeed the case when
stepwise procedures are applied to the multiple myeloma data
(Krall, Uthoff § Harley, 197S). In comparison, all subsets
regression provides more information, is more reliable and is to
be preferred provided that it is computationally feasiﬁle. The
purpose of this paper is to show that within the framework of the
propoftional hazgrds model (Cox, 1972) all subsets regression can

be performed with very little computational efforts.

The first selection criterion that we consider is based on
cross-validation. We argue that the correct way to cross-validate

in our setting is to change the status ofone observation from

‘uncensored to censored. An asymptotically equivalent criterion

that requires less computation is the following: if a indexes

the model, choose a to minimize
A, =W, + 2P, (D

where Wu denotes the partial likelihood ratio statistic for
testing the model a against the full model and Pa is the number
of covariates included in model a. The criterion that

requires least computation is
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where W; denotes Wald statistic. We show that criterion A' is

- formally equivalent to Mallow's CP As a result, we are able to

'.’

i compute and compare the values of A' for all possible subsets

b1y .
making use of standard statistical packages. We apply this to

+5g

'Qq the multiple myeloma data and obtain results remarkably different

)

i;“ from those obtained by previous workers using stepwise procedures.

‘.l
New insights are gained and the superiority of all subsets

l".

.‘: regression over stepwise regression is clearly demonstrated.
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.'," 2. CRITERIA FOR SELECTING VARIABLES
:;": The proportional hazards model is specified by the hazard

¢
:§! relationship
%
R A(t;x) = a9(t)exp(x8)
e
'%.: where x is a row vector of P covariates, B is a column vector of
«? P regression constants and 14(t) is an arbitrary and unspecified
o baseline hazard function. Let (tj,sj), j=1,...,n be an observed
N .
:.:"‘ sample of failure times with § 3 =0 indicating a right-censored
8 &
:::. observation and 6j = 1 indicating a failure. The associated covariate
f vectors are Xj, ..., X,. An estimate of 8 is obtained by maximizing
E’ the partial likelihood
J:.

-4 . . k ex(i)B
X ' ) LB} = B —m—m—— , (3
: i=1 x;8
% ' g e
i ' R
W IR sy
!
,A\" )
::5:: where t(l) < ... < t(k) are the uncensored failure times with
ii:i:. corresponding covgriates X1)r co0 Xqe)? censoring status
"'S, s
:?ff. 6(1), ceey G(k) and R(i) is the set of individuals known to be
o alive just prior to t(i)' By setting different components of 8
"
fr{.} to zero, we obtain 2? submodels of the full model.
oL '
¥y
. We propose the following criterion for model choice: if a
. indexes the model, choose o to maximize
e
e,
ne k e"(i)s-i(")

n - ’ (4)
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where é_i(a) denotes the maximum partial likelihood estimate of 8
computed under model a when G(i) is changed from one to zero. We
call (4) the cross-validatory criterion for two reasons. Firstly,
we note that changing G(i) from one to zero corresponds to removing
the ith term from the partial likelihood (3), This is similar
mathematically to ordinary cross-validation where the effect of
deleting one observation is to remove one term from the likelihood
function. Secondly, we note that the ith term of (3) is the

conditional probability
P{death of (i) at time t(i)lone death in R(jy at time :(i)}. (5)

It would be unrealistic to access the choice of a with

x...B8(c)
R
=1 a"ja("‘j

IR

(6

-

Since the information that (i) died at t(i) is used to obtain
8(a), the ith term of (6) is a biased estimate of (5). If we
change c(i) from one to zero, we still retain the information
that (i) is alive just prior to t(i) but the fact that (i) died
at t(i) is no longer used. This is very similar in spirit to

ordinary cross-validation.

While the cross-validatory criterion is of theoretical
interest, its computation is prohibitive. For each of the 2p
models, we have to compute §_i, i=1,...,k, each of which requires
iteration. By following the proof of Stone (1977), we can show

the asymptotic equivalence of model choice by cross-validation
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;' - and criterion A. In particular, if a) C a; and a; is correct,
W
3§ then the asymptotic significance level of either criterion is
r
t
2 = - 'y Ky - ®

P(xv 3 2v) where v Pcz Pnl' Criterion A as defined in (1)
-“Q‘ - a~
§§ requires less computation since we only need to compute one 8
#
ﬁ& " for each model. In spite of this, the task remains formidable.
"y
. An alternative criterion is A' which is based on Wald statistic.
[
;# Peace § Flora (1978), Lee, Harrel, Tolley § Rosati (1983) compare
{
@ the partial 1likelihood ratio statistic and Wald statistic
& »

and find them comparable in accessing the effects of concomitant
9 variables in survival analysis. We also find good agreement
F
%? between A and A'. Criterion A' as defined in (2) is computationally
¥
{ - ~ a
' simplier. If we partition BT as (B?, Bg) and BT = (BT, B}) is
5o -1
o obtained under the full model, then W& = 3202282 where without
A
'; loss of generality we have assumed that model a corresponds to
7. 8 . .

setting 82, =0 and
‘i;l
’;'x
- Cii Ci2 -1
ﬁi C= a I .
o C22 Ca2
o:}
o) the inverse of the information matrix, is the estimated covariance
> .
fg: matrix of 8. Lawless § Singhal (1978) note that if we begin with
& I 18
S . &)
o a1 813

X then by operating on the matrix with a sequence of sweep operations,

21
we can obtain W; = B5C328; for all ZP models. Instead of (7), we

‘u‘.‘ use the matrix
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where N is an arbitrary integer greater than P. This matrix can
be obtained easil} since B and C=1"' are the standard output of
any program that does Cox regression. The program that we use is
the BMDP program P2L. If we treat (8) as if i't were the matrix
of corrected sums of squares and cross products of the independent
and dependent variables computed from a sample of size N, then
criterion A' is formally equivalent to Mallow's Cp To see this,

note that
RSS (a)
62

cl,(d) =

where 62 = RSS(full model)/(N-P-1) = 1 by our choice of (8).

+ Z(Pu'o- 1) - N

ala

Since RSS(a) = RSS(full model) + BiC3383,
CP(°) = A; - (P-1)

and the two criteria are equivalent. The problem can now be
handled by standard statistical packages. We use the BMDP

program P9R which does all subeets linear regression.

. .
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Krall, Uthoff § Harley (1975) presents a data set consisting

Ay of the survival times of sixty five multiple myeloma patients

A

) . . . . .

A3 with sixteen concomitant variables. Seventeen of the observations

are censored. They assume an exponential regression model in
55 which the mean survival time is a linear function of the concomitant
g variables. A step-up procedure based on the likelihood ratio
criterion leadsto the subset {1,2,16}. Lawless § Singhal (1978)

o adopt a proportional hazards exponential regression model
l“ . .
b A(x) = Agexp(xB) .

They report the best three subsets of each size, according to

E% the value of the likelihuod ratio statistic and Wald statistic.

_ ) The best subset of size two is {1,2}. To compare subsets of
. different sizes,we use Akaike's criterion and end up with (1,2}
_gs as the best subset. Unfortunately, Lawless § Singhal do not

9: consider all sixteen concomitant variables of the original data
;% set. Instead, they consider only variables 1, 2, 3, S5, 6,.7, 9,
ééi 16. We shall see later that this is a very poor choice. Peduzzi,
: Hardy § Holford (1980) also assume a multiplicative exponential
3%1 regression model and use a stepwise procedure to identify {1,2}
53? as the best subset of the eight variables considered by Lawless
;;A § Singhal. Their criterion for inclusion of a variable is based
?gi . on the score statistic for testing the current model against the
::E : candidate model. The criterion for removal of ; variable is

- based on Wald statistic. The above analyses are all based

on exponential regression models, an analysis based on Cox model

LRI 5% .~ 3 . R TS RTINS T e e N T e LN N S Tl L L e L L e e . SRR S LY
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appears as an example iﬁ hMDP manual where stepwise regression
based on the pariial likelihood ratio criterion leads again to
the subset {1,2}. Our analysis provides a lot more information
than any stepwise procedure. We report in Table 1 the best three
subsets of each size according to CP = A'-15. For comparison
purpose, we also compute the valuesof LR = A- 15 for these models.
The agreement between A and A' appears to be good especially for
the better subsets. It can be observed that the value of CP for
the best subset of size Pa decreases initially,reaches a bottom
at P = 8,and then begin to increase. The best subset is
{1,2,4,6,7,8,12,13} which has a log partial likelihood of -140.20
compared with -138.14 of the full model. The relationship among
the best five subsets is shown in Figure 1 and summary statistics
for the best subset is given in Table 2. The subset {1,2)} selected
by the majority of previous workers is far from being the best.
Its CP value of 11.04 and LR value of 10.52 are considerablynlarger
than the corresponding values 5.00 and 5.11 of the best subset.
The associated log partial likelihood of -148.90 is unimpressive.
The -~ partial 1likelihood ratio statistic for testing the subset
{1,2} against the best subset is 17.4 which is significant at the
0.01 level. Neverthless, we observe that the addition of an extra
variable to {1,2} does not add much. In fact, the improvement is
gradualuntil we reach P =7. This explains the selection of {1,2)
by stepwise procedures. Lastly, we consider {1,2,3,5,6,7,9,16},
the set of variables used by Lawless & Singhal. Its CP value

of 17.84 and LR value of 17.66 are large. The associated iog
partial likelihood is -146.47 compared with -140.20 of the best

subset which also has eight variables and -146.54 of the best

subset of size 4.
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§*
‘.é % Overall Log partial
N Pa Variables in model Position cp LR likelihood
o’ 1 1 13.28 12.67  -150.98
- 2 14.35 15.61 -152.45
~y 13 16.71 18.39 -153.84
"G
o 2 1,2 11.04 10.52 -148.90
- 1,13 12.22  11.52 -149.40
- 1,4 13.92  13.98 -150.63
a
o 3001,2,16 10.93 10.82  -148.05
~ 1,2,13 10.96 10.77 -148.03
1,2,14 11.11  11.02 -148.16
L'
o8 4 1,3,12,13 9.26  9.80 -146.54
b 1,12,13,14 10.15  9.22 -146.25
- 1,2,12,13 10.23  10.63 -146.96
-
C 5  1,2,12,13,14 7.99  8.63 -144.96
- 1,3,7,12,13 8.59 10.17 -145.73
-] 1,3,4,12,13 8.89 9.84 -145.56
o 6 1,3,4,7,12,13 7.96 9.28  -144.28
S 1,2,7,12,13,14 8.00 9.12 -144.20
N 1,3,6,7,12,13 8.10  8.95 -144.12
[ 7 1,3,4,6,7,12,13 5 6.45  7.59 -142.44
- 1,3,4,7,8,12,13 7.11 7.67 -142.48
Sy 1,3,4,7,12,13,14 8.04 9.19 -143.24
o
_J 8 1,3,4,6,7,8,12,13 1 5.00 5.11 -140.20
[ 1,3,4,7,8,12,13,14 7.23  7.65 -141.47
; 1,2,3,4,6,8,12,13 7.28  8.18 -141.73
;': +4,2,3,5,6,7,9,16 17.84 17.66 -146.47
]
O 9 1,2,3,4,6,7,8,12,13 2 5.89  S5.85 -139.57
o 1,3,4,6,7,8,12,13,14 3 6.15  6.15 -139.72
o 1,3,4,5,6,7,8,12,13 6.53 6.75 -140.02
¥ ‘
. 10 1,2,3,4,6,7,8,12,13,14 4 6.33  6.32 -138.80
o 1,3,4,6,7,8,12,13,14,15 7.08  7.16 -139.22
el 1,2,3,4,6,7,8,12,13,15 7.66  7.64 -139.46
S 11 1,2,3,4,6,7,8,12,13,14,15 7.23  7.23 -138.26
:'vg 1,2,3,4,5,6,7,8,12,13,16 9.17  9.32 -139.30
33 1,3,4,5,6,7,8,10,11,12,13 10.15 10.33 -139.81
[
Yl 12 9.13  9.12 -138.21
}gﬁ{‘ 13 11.07 11.07 -138.18
o 14 13.02 13,02 -138.15
jyg 15 15.01  15.01 -138.15
s Full model 17.0¢ 17.00 -138.14
. * This is the subset selected by stepwise procedures.
'* t+ This is Lawless § Singhal's subset.
T 2 e 2 e S e e e e S A R UL WG LN
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Fig. 1. Relationship among the best five subsets
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Summary -statistics for the best subset.

Table 2.
Log partial likelihood = -140.20
Coefficient Standard error ~ Coeff./S.E.

1.9160 .6112 3.1346
~1.5439 .502% -3.0726
.9889 .4367 2.2647
-.8171 .3951 -2.0681
1.8418 .7701 2,3915
.8047 .4078 1.9734
.1070 .0311 3.4384
1.5074 .4147 3.6345
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Exp(Coeff.)

6.7938
0.2135
2.6883
0.4417
6.3081
2.2360
1.1130
4.5149
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